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Abstract. We develop a 5D mechanism, inspired by Campbell’s theorem, to explain the (neutral scalar
field governed) evolution of the universe from an initially inflationary expansion that has a change of
phase towards a decelerated expansion and thereafter evolves towards the present day observed accelerated
(quintessential) expansion.
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1 Introduction

In a cosmological context, the energy density of scalar fields
has been recognized to contribute to the expansion of the
universe [1], and has been proposed to explain inflation [2],
as well as the presently observed accelerated expansion [3].
The observed isotropy and homogeneity of the universe
do not allow for the existence of long-range electric and
magnetic fields, but neutral scalar fields can have non-
trivial dynamics in an expanding Friedmann–Robertson–
Walker (FRW) universe. An attempt to confront the data
with the predictions for a minimally coupled scalar field
with an a priori unknown potential was made recently [4].

The idea that matter in 4D can be explained from a
5D Ricci-flat (RAB = 0) Riemannian manifold is a conse-
quence of Campbell’s theorem. It says that any analytic
N -dimensional Riemannian manifold can be locally em-
bedded in a (N + 1)-dimensional Ricci-flat manifold. This
is of great importance for establishing the generality of
the proposal that 4D field equations with sources can be
locally embedded in 5D field equations without sources [5].
In other words, 4D matter can be induced by a 5D apparent
vacuum. Campbell’s theorem is closely related to Wesson’s
interpretation of 5D vacuum Einstein gravity [6–8]. In view
of this, it would be of interest to consider the embedding
of 4D cosmological solutions in 5D Ricci-flat spaces. In
Wesson’s theory [called space-time-matter (STM) theory],
the extra dimension is not assumed to be compactified,
which is a major departure from earlier multidimensional
theories where the cylindricity conditions were imposed.
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In this theory, the original motivation for assuming the
existence of a large extra dimension was to achieve the
unification of matter and geometry, i.e. to obtain the prop-
erties of matter as a consequence of the extra dimensions.
For example, an attempt to understand inflation [which
is governed by the neutral scalar (inflaton) field], from a
5D flat Riemannian manifold was made in [11]. During
inflation, the scale factor of the universe accelerates, and
this acceleration is driven by the potential energy associ-
ated with the self-interactions of a scalar field. However,
Campbell’s theorem implies that all inflationary solutions
can be generated, at least in principle, from 5D vacuum
Einstein gravity [10]. But could it be possible to develop a
formalism to describe the whole evolution of the universe?

The aim of this work is to develop a 5D mechanism
inspired by Campbell’s theorem, to explain the (neutral
scalar field governed) evolution of the universe from an
initially inflationary (superluminal) expansion that has
a change of phase towards a decelerated (radiation and
later matter dominated) expansion and thereafter evolves
towards the present day observed accelerated expansion
(quintessence) [12]. Although Campbell’s theorem relates
N -dimensional theories to vacuum (N + 1)-dimensional
theories, it does not establish a strict equivalence between
them [9]. It is therefore important to determine when such
theories are equivalent. Clearly, this is a more severe re-
striction than embeddability. Two notions of equivalence
that could be considered are dynamical equivalence and
geodesic equivalence. Dynamical equivalence would imply
that the dynamics of vacuum N -dimensional theories is
included in a vacuum (N + 1)-dimensional theories. Al-
ternatively, one may consider geodesic equivalence, in the
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sense of Mashhoon et al. [10]. In this case the (3+1) geodesic
equation induces a (2 + 1) geodesic equation plus a force
(per unity of mass) term FC

dUC

dS
+ ΓCABU

AUB = FC .

As was demonstrated in [10], for canonical metrics the
requirement FC = 0 holds. Hence, in such metrics it is not
really an extra assumption that the motion is geodesic.

In this work we shall use the geodesic equivalence ap-
proach.

2 Formalism

Toachieve our goal,we consider the canonical 5Dmetric [13]

dS2 = ε
(
ψ2dN2 − ψ2e2Ndr2 − dψ2) , (1)

where dr2 = dx2 +dy2 +dz2. Here, the coordinates (N, r)
are dimensionless, the fifth coordinate ψ has spatial unities
and ε is a dimensionless parameter that can take the values
ε = 1,−1. The metric (1) describes a flat 5D manifold in
apparent vacuum (GAB = 0). We consider a diagonal met-
ric because we are dealing only with gravitational effects,
which are the important ones in the global evolution for the
universe. To describe neutral matter in a 5D geometrical
vacuum (1) we can consider the Lagrangian

(5)L(ϕ,ϕ,A) = −
√∣∣∣∣ (5)g

(5)g0

∣∣∣∣ (5)L(ϕ,ϕ,A) , (2)

where |(5)g| = ψ8e6N is the absolute value of the determi-
nant for the 5D metric tensor with components gAB (A,B
take the values 0, 1, 2, 3, 4) and |(5)g0| = ψ8

0e6N0 is a con-
stant of dimensionalization determined by |(5)g| evaluated
at ψ = ψ0 and N = N0. In this work we shall consider
N0 = 0, so that (5)g0 = ψ8

0 . Here, the index “0” denotes
the values at the end of inflation. Furthermore, we shall
consider an action

I = −
∫

d4xdψ

√∣∣∣∣ (5)g
(5)g0

∣∣∣∣
[ (5)R

16πG
+ L(ϕ,ϕ,A)

]
,

for a scalar field ϕ which is minimally coupled to gravity.
Here, (5)R is the 5D Ricci scalar, which, of course, is zero for
the 5D flat metric (1), and G is the gravitational constant.

Since the 5D metric (1) describes a manifold in apparent
vacuum, the density Lagrangian L in (2) must be

(5)L(ϕ,ϕ,A) =
1
2
gABϕ,Aϕ,B , (3)

which represents a free scalar field. In other words, we
define the vacuum as a purely kinetic 5D-lagrangian on a
globally 5D flat metric [in our case, the metric (1)]. In the
3D comoving frame Ur = 0, the geodesic dynamics dUC

dS =
−ΓCABUAUB with gABUAUB = 1 give us the velocitiesUA:

Uψ= − 1√
u2(N) − 1

, Ur= 0 , UN =
u(N)

ψ
√
u2(N) − 1

,

which are satisfied for S(N) = ±|N |. In this work we
shall consider the case S(N) = |N |. In this representation
dψ
dN = ψ/u(N), where u(N) is an arbitrary function. Thus
the fifth coordinate evolves as

ψ(N) = ψ0e
∫

dN/u(N) . (4)

Here,ψ0 is a constant of integration that has spatial unities.
From the mathematical point of view, we are taking a
foliation of the 5D metric (1) with r constant. Hence, to
describe the metric in physical coordinates we must make
the following transformations: t =

∫
ψ(N)dN , R = rψ,

L = ψ(N) e− ∫
dN/u(N), such that for ψ(t) = 1/h(t), we

obtain the 5D metric

dS2 = ε
(
dt2 − e2

∫
h(t)dtdR2 − dL2

)
, (5)

where L = ψ0 is a constant and h(t) = ḃ/b is the effective
Hubble parameter defined from the effective scale factor of
the universe b. The metric (5) describes a 5D generalized
FRW metric, which is 3D spatially flat [i.e., it is flat in
terms of R = (X,Y, Z)], isotropic and homogeneous. In the
representation (R, t, L), the velocities ÛA = ∂x̂A

∂xB U
B are

U t =
2u(t)√
u2(t) − 1

, UR = − 2r√
u2(t) − 1

, UL = 0 ,

(6)
where the old velocities UB are UN , Ur = 0 and Uψ and
the velocities ÛB are constrained by the condition

ĝABÛ
AÛB = 1 . (7)

Furthermore, the function u can be written as a func-
tion of time u(t) = − h2

ḣ
, where the overdot represents

the derivative with respect to the time. The solution N =
arctanh[1/u(t)] corresponds to a time dependent power-law
expanding universe h(t) = p1(t)t−1, such that the effective
scale factor goes as b ∼ e

∫
p1(t)/tdt. When u2(t) > 1, the ve-

locitiesU t andUR are real, so that the condition (7) implies
that ε = 1. [Note that the function u(t) can be related to the
deceleration parameter q(t) = −b̈b/ḃ2: u(t) = 1/[1+ q(t)].]
In such a case the expansion of the universe is accelerated
(b̈ > 0). However, when u2 < 1 the velocitiesU t andUR are
imaginary and the condition (7) holds for ε = −1. In this
case the expansion of the universe is decelerated because
b̈ < 0. So, the parameter ε is introduced in the metric (5)
to preserve the hyperbolic condition (7). Moreover, the co-
ordinates (R, t, L) have physical meaning, because t is the
cosmic time and (R, L) are spatial coordinates. Since the
line element is a function of time t (i.e., S ≡ S(t)), the new
coordinate R gives us the physical distance between galax-
ies separated by cosmological distances: R(t) = r(t)/h(t).
Note that for r > 1 (r < 1), the 3D spatial distance R(t) is
defined on super (sub) Hubble scales. Furthermore b(t) is
the effective scale factor of the universe and describes its
effective 3D euclidean (spatial) volume (see below). Hence,
the effective 4D metric is a spatially (3D) flat FRW one,

dS2 → ds2 = ε
(
dt2 − e2

∫
h(t)dtdR2

)
, (8)
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and has a effective 4D scalar curvature (4)R = 6(ḣ+ 2h2).
The metric (8) has a metric tensor with components gµν
(µ, ν take the values 0, 1, 2, 3). The absolute value of the
determinant for this tensor is |(4)g| = (b/b0)6. The density
Lagrangian in this new frame was obtained in a previous
work [14]

(4)L [ϕ(R, t), ϕ,µ(R, t)] (9)

=
1
2
gµνϕ,µϕ,ν − 1

2

[
(Rh)2 − b20

b2

]
(∇Rϕ)2 ,

and the equation of motion for ϕ yields

ϕ̈+ 3hϕ̇− b20
b2

∇2
Rϕ (10)

+

[(
4
h3

ḣ
− 3

ḣ

h
− 3

h5

ḣ2

)
ϕ̇+

(
b20
b2

− h2R2
)

∇2
Rϕ

]
= 0 .

From (9) and (10), we obtain respectively the effective
scalar 4D potential V (ϕ) and its derivatives with respect
to ϕ(R, t) are

V (ϕ) ≡ 1
2

[
(Rh)2 −

(
b0
b

)2
]

(∇Rϕ)2 , (11)

V ′(ϕ) ≡
(

4
h3

ḣ
− 3

ḣ

h
− 3

h5

ḣ2

)
ϕ̇+

(
b20
b2

− h2R2
)

∇2
Rϕ ,

(12)

where the prime denotes the derivative with respect to
ϕ. Equations (9) and (10) describe the dynamics of the
inflaton field ϕ(R, t) in a metric (8) with a Lagrangian

(4)L[ϕ(R, t), ϕ,µ(R, t)] (13)

= −
√∣∣∣∣ (4)g

(4)g0

∣∣∣∣
[

1
2
gµνϕ,µϕ,ν + V (ϕ)

]
,

where
∣∣(4)g0∣∣ = 1.

Furthermore, the 4D energy density ρ and the pressure
p are [13]

8πGρ = 3h2 , (14)

8πGp = −(3h2 + 2ḣ) . (15)

Note that the function u(t) can be related to the deceler-
ation parameter q(t) = −b̈b/ḃ2: u(t) = 1/[1 + q(t)]. From
the condition (7) we can differentiate some different stages
of the universe. If u2(t) = 4r2(b/b0)2−1

3 > 1, we obtain that
r can take the values r > 1 (r < 1) for b/b0 < 1 (b/b0 > 1),
respectively. In this case q < 0, so that the expansion is
accelerated. On the other hand if u2(t) = 4r2(b/b0)2−1

3 < 1,
r can take the values r < 1 (r > 1) for b/b0 > 1 (b/b0 < 1),
respectively. In this stage q > 0 and the expansion of
the universe is decelerated, so that the function u(t) take

the values 0 < u(t) < 1 and the velocities (6) become
imaginary. Thus, the metric (8) shifts its signature from
(+,−,−,−) to (−,+,+,+). When u(t) = 1 the decelera-
tion parameter becomes zero because b̈ = 0. At this mo-
ment the velocities (6) rotate synchronically in the complex
plane, and r take the values r = 1 or r < 1, for b/b0 = 1
or b/b0 > 1, respectively.

On the other hand, the effective 4D energy density
operator ρ is

ρ =
1
2

[
ϕ̇2 +

b20
b2

(∇ϕ)2 + 2V (ϕ)
]
. (16)

Hence, the 4D expectation value of the Einstein equation〈
H2
〉

= 8πG
3 〈ρ〉 on the 4D FRW metric (8) will be

〈
H2〉 =

4πG
3

〈
ϕ̇2 +

b20
b2

(∇ϕ)2 + 2V (ϕ)
〉
, (17)

where G is the gravitational constant and
〈
H2
〉 ≡ h2 =

ḃ2/b2. Now we can give a semiclassical treatment [11] for the
effective 4D quantum field ϕ(R, t), such that 〈ϕ〉 = φc(t):

ϕ(R, t) = φc(t) + φ(R, t) . (18)

For consistence we take 〈φ〉 = 0 and 〈φ̇〉 = 0. With this
approach the classical dynamics on the background 4D
FRW metric (8) is well described by the equations

φ̈c + 3
ḃ

b
φ̇c + V ′(φc) = 0 , (19)

H2
c =

8πG
3

(
φ̇2

c

2
+ V (φc)

)
, (20)

where H2
c = ȧ2/a2 and the prime denotes the derivative

with respect to the field. In other words the scale factor a
only takes into account the expansion due to the classical
Hubble parameter, but the effective scale factor b takes into
account both classical and quantum contributions in the
energy density: ḃ

2

b2 = 8πG
3 〈ρ〉. Since φ̇c = − H′

c
4πG , from (20)

we obtain the classical scalar potential V (φc) as a function
of the classical Hubble parameter Hc

V (φc) =
3M2

p

8π

[
H2

c − M2
p

12π
(H ′

c)
2

]
,

where Mp = G−1/2 is the Planckian mass. The quantum
dynamics is described by〈

H2〉 = H2
c (21)

+
8πG

3

〈
φ̇2

2
+

b20
2b2

(∇φ)2 +
∑
n=1

1
n!
V (n)(φc)φn

〉
,

φ̈+ 3
ḃ

b
φ− b20

b2
∇2φ+

∑
n=1

1
n!
V (n+1)(φc)φn = 0 . (22)
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In what follows we shall make the following identification:

Λ(t) = 8πG

〈
φ̇2

2
+

b20
2b2

(∇φ)2 +
∑
n=1

1
n!
V (n)(φc)φn

〉
,

(23)
such that

ḃ2

b2
=
ȧ2

a2 +
Λ

3
. (24)

On cosmological scales, the fluctuations φ are small, so that
it is sufficient to make a linear approximation (n = 1) for
the fluctuations. Thus, the second term in (24) is negligible
on such scales. However, the second term in (24) could be
important in the ultraviolet spectrum and more exactly at
Planckian scales. At these scales the modes for φ should
be coherent and the matter inside these regions can be
considered as dark. Hence, the significant contribution for
the function Λ(t) is given by

Λ(t) (25)

� 8πG

〈
φ̇2

2
+

b20
2b2

(∇φ)2 +
∑
n=1

1
n!
V (n)(φc)φn

〉∣∣∣∣∣
Planck

.

In this sense, we could make the identification forΛ as a cos-
mological parameter which only takes into account the “co-
herent quantum modes” (or dark matter) contribution for
the expectation value of energy density: 〈ρΛ〉 = Λ/(8πG).
For simplicity, in the following we shall consider Λ as a con-
stant.

Once having done the linear approximation (n = 1)
for the semiclassical treatment (18), we can make the
identification of the squared mass for the inflaton field
m2 = V ′′(φc) [16]. Hence, after we make a linear expan-
sion for V ′(ϕ) in (12), we obtain

V ′(φc) ≡
(

4
h3

ḣ
− 3

ḣ

h
− 3

h5

ḣ2

)
φ̇c , (26)

m2φ ≡
(

4
h3

ḣ
− 3

ḣ

h
− 3

h5

ḣ2

)
∂φ

∂t

+
(
b20
b2

− h2R2
)

∇2
Rφ . (27)

Taking into account the expressions (19) with (26) and (22)
with (27), we obtain the dynamics for φc and φ. Hence, the
equations φ̈c+3hφ̇+V ′(φc) = 0 and φ̈+3hφ̇−(b/b0)2∇2

Rφ+
V ′′(φc)φ = 0 now take the form [14]

φ̈c + [3h+ f(t)] φ̇c = 0 , (28)

φ̈+ [3h(t) + f(t)] φ̇− h2R2∇2
Rφ = 0 , (29)

where

f(t) =

(
4
h3

ḣ
− 3

ḣ

h
− 3

h5

ḣ2

)
. (30)

3 An example

To illustrate the formalism we consider a time dependent
power expansion p(t) = 2/3 + At−2 − Bt−1, such that
the classical Hubble parameter is given by Hc(t) = p(t)/t
and (A,B) are constants. The effective power p1(t) for the
effective Hubble parameter h(t) will be

p1(t) =
√

(2/3 +At−2 −Bt−1)2 + Λ/3t2,

because h2 = H2
c +Λ/3. In what follows we shall consider

the universe as spatially flat. This implies that the total
density parameter will be ΩT = Ωr +Ωm +ΩΛ = 1, for a
critical energy density given by ρc = 3

8πGh
2, such that

Ωr +Ωm =
H2

c

h2 , ΩΛ =
Λ

3h2 , (31)

whereΩr,Ωm andΩΛ are respectively the contributions for
radiation, matter and Λ. In our case, because we consider
ΩT = 1, this implies that

p2
1(t) = p2(t) +

1
3
Λt2 , (32)

where t > 0 is the cosmic time. We define b/b0 = eN , such
that b0 ≡ b(t = t0), where we shall consider t0 as the time
when inflation ends (i.e., the time for which b̈ = 0). Thus
N will be grater than zero only for times larger than t0, but
negative for t < t0 (i.e., during the previous inflationary
phase). This means that the parameter N gives us the
number of e-folds with respect to the scale factor at the
end of inflation: b0. Once we have defined the scale for
N , we can see the evolution for the function u(t). During
inflation b̈ > 0, so that u(t) > 1 and ε = 1. In such an epoch
q < 0 (i.e., the universe is accelerated) and b/b0 = eN < 1,
becauseN < 0. In such a phase the parameter r obeys r �
1. This means that cosmological scales include regions very
much larger than the Hubble horizon [see the metric (8)].

At the end of inflation u(t) take values close to (but
larger than) unity. At t = t0 b̈ = q = 0, the function
u(t0) = 1, so that the global hyperbolic geometry condi-
tion ĝABÛAÛB = 1 is not well defined [see (6)]. However,
the line element (8) is well defined. At this moment the
universe suffers a change of phase from an accelerated to a
decelerated expansion and r = 1, because b(t = t0) = b0.

During the second phase (i.e., decelerated expansion)
the universe is governed by radiation and later by matter.
The function u2(t) is smaller than unity (but u2 > 0), so
that r takes values 1

2 e−N = 1
2 b0/b < r < 1, for N > 0.

This means that, during this phase, the metric (8) de-
scribes the universe on scales smaller than the Hubble
radius: r/h < 1/h. The interesting thing here is that the
velocities (6) become purely imaginary and the signature
of the 4D effective metric (8) changes synchronically (with
respect to the signature during the inflationary phase):
(+,−,−,−) → (−,+,+,+); that is, ε jumps from 1 to −1
to preserve the global geometry in (7). In this sense we
can say that the 4D effective metric (8) is “dynamical”.
Note that this possibility was first considered by David-
son and Owen in [17]. Fig. 1 shows the evolution of the
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Fig. 1. Evolution of p1[x(t)]
(dashed line) and p[x(t)] (con-
tinuous line) as a function
of x(t) = log10(t), for A =
1.5 1030 G1, B = 1015 G1/2

Fig. 2. Evolution of (Ωm +
Ωr)[x(t)] as a function of
x(t) = log10(t), for A =
1.5 1030 G1, B = 1015 G1/2

powers p1[x(t)] (dashed line) and p[x(t)] (continuous line)
as a function of x(t) = log10(t) for A = 1.5 1030G1 and
B = 1015G1/2. Numerical calculations give us the time for
which b̈ = q = 0 at the end of inflation: x(t0) � 14.778.
At this moment N(t0) = 0, but after this it becomes pos-
itive. Note that for x(t) < 60.22 both curves are very
similar, but for x(t) > x(t∗) (with x(t∗) � 60.22), p1
increases very rapidly but not p, which remains almost
constant with a value close to p � 2/3. The difference
between both curves is due to the presence of a non-zero
“cosmological constant” (Λ), which was given the value
of Λ = 1.5 10−121G−1. [At the moment consensus has
emerged on the experimental value of the cosmological con-
stant [18,19]. It is of the order of magnitude of the matter
energy density: ρΛ ∼ (2–3)ρm. The Wilkinson Microwave
Anisotropy Probe (WMAP) data suggest that the universe
is very nearly spatially flat, with a density parameterΩT =
1.02±0.02 [20].] In other words, at t∗ � 1.66 1060G1/2 the
deceleration parameter becomes zero and later negative.
At this moment, the universe changes from a decelerated
to an accelerated phase and ε jumps from −1 to 1 because
u(t) evolves from u(t < t∗) < 1 (decelerated expansion) to
u(t > t∗) > 1 (accelerated expansion). It should be when
the universe was nearly 0.4 1010 years old. The present day
age of the universe was considered as x(t) = 60.653G1/2

(i.e., 1.5 1010 years old). Note that Ωr + Ωm decreases
for late times [see Fig. 2], so that its present day value
should be (Ωr + Ωm)[x(t = 60.653G1/2)] � 0.32. Thus,
the present day value for the vacuum density parameter
ΩΛ = 1 − (Ωr +Ωm) should be ΩΛ[x(t = 60.653G1/2)] �
0.68.With these parameter valueswe obtain the present day
deceleration parameter: q[x(t = 60.653G1/2)] � −0.747,
so that the present day cosmological parameter should be
ω[x(t = 60.653G1/2)] � −0.831. Note that all these results
are in very good agreement with observation [15,20].

4 Final comments

The possibility that our universe is embedded in a higher
dimensional space has generated a great deal of active inter-
est. In brane-world and STM theories the usual constraint
on Kaluza–Klein models, namely the cylinder condition,

is relaxed so the extra dimensions are not restricted to be
compact. Although these theories have different physical
motivations for the introduction of a large dimension, they
share the same working scenario, and lead to the same dy-
namics in 4D [21]. In this work we have studied a model for
the evolution of the universe which is globally described
by a single scalar field from a 5D apparent vacuum. Such a
vacuum is described by the diagonal metric (1) and a purely
kinetic Lagrangian.The 5D formalismhere developed could
be extended to other particular frames or quantum fields.
Moreover, the evolution of the universe could be examined
taking into account also electromagnetism by introducing
off-diagonal terms in the metric [22], which should be rele-
vant to the study of 3D spatial anisotropies in the universe
on astrophysical scales. However, all these issues go beyond
the scope of this work.
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